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Introduction

• Inverse modeling seeks model parameters given a set of
observed-state variables.

• For many practical hydrogeological problems, because the data
coverage is limited, the inversion can be ill-posed and unstable.

• To stabilize the inversion, regularization techniques can be
employed to eliminate the ill-posedness.

• The most commonly used type of regularization include Tikhonov
and Total-Variation (TV).

• However, Tikhonov regularization tends to yield smoothed
inversion results, and conventional TV regularization can be
computationally unstable and yield unwanted artifacts.

• We have developed a novel hydraulic inverse modeling method
using a TV regularization with relaxed variable-splitting scheme to
preserve sharp interfaces and improve the accuracy of inversion.
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Hydrogeologic Inverse Modeling - Illustration

• Input: Measured values (hydraulic heads) at N observation wells.

• Output: Model parameter values (conductivity or transmissivity)
at every grid node of the model.
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Forward Problem

The forward problem of hydrogeologic inverse modeling is governed by
the groundwater flow equation,

Groundwater Flow Equation

∇ · (T∇h) = g
g(x , y) = 0
∂h
∂x

∣∣∣∣
a,y

=
∂h
∂x

∣∣∣∣
b,y

= 0

h(x , c) = 0,h(x ,d) = 1

where h is the hydraulic head, T is the transmissivity and g is a
source/sink (here, set to zero).
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Forward Problem

Using the operator, the forward modeling problem of the hydrogeologic
inverse modeling can be simplified as,

Groundwater Flow Equation - Operator Form

h = f (T),

where f (·) is the forward operator mapping from the model parameter
space to the measurement space.
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Inverse Problem

Correspondingly, the problem of model calibration can be posed as a
damped least-squares problem,

Hydrogeologic Inverse Modeling

m = arg min
m

{
‖d− f (m)‖22

}
,

where d represents a recorded hydraulic head dataset, m is the
calibrated model parameter, ‖d− f (m)‖22 measures the data misfit,
|| · ||2 stands for the L2 norm.
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Regularization Theory

• Inverse modeling with general regularization term can be posed
as,

Hydrogeologic Inverse Modeling with Regularization

m̂ = arg min
m

{
‖d− f (m)‖22 + λR(m)

}
,

where R(m) is a general regularization term and the parameter λ
is a parameter controlling the amount of regularization in the
inversion.
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Inverse Problem & Regularization Techniques

• General Regularization Methodology

Inverse Modeling with regularization

min
m

{
‖d− f (m)‖22 + λR(m)

}
,

where ‖d− f (m)‖2
2 is data fidelity term, R(m) is the regularization term and λ is the regularization parameter.

• Specific Regularization and Its Characteristics
• Total-Variation (TV): R(m) = ‖∇m‖1 =

∑
i |(δm)i |, (1-D)

Best suited for reconstructing piecewise-constant functions, computationally expensive

• Tikhonov (TK): R(m) = ‖L m‖2 =
∑

i(δm)2
i , (1-D)

Best suited for reconstructing smooth functions, computationally cheap

5

2

1

2

• TVstep = 5;
TVsmooth = 2 + 2 + 1 = 5.

• TKstep = 52 = 25;
TKsmooth = 22+22+1 = 9←.
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Total Variation Regularization with Relaxed
Variable-Splitting Scheme

The misfit function of hydraulic inverse modeling using total-variation
regularization with relaxed variable-splitting is:

A New Misfit Function of Hydraulic Inverse Modeling

E(m,u) = min
m,u

{
‖d− f (m)‖22 + λ1 ‖m− u‖22 + λ2 ‖∇u‖1

}
,

• ‖d− f (m)‖22 is the data misfit term;

• ‖m− u‖22 and ‖∇u‖1 are the regularization terms;
• λ1 and λ2 are the regularization parameters;
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Total-Variation Regularization with Relaxed
Variable-Splitting

A New Misfit Function of Hydraulic Inverse Modeling

E(m,u) = min
m,u

{
‖d− f (m)‖22 + λ1 ‖m− u‖22 + λ2 ‖u‖TV

}
,

where λ1 and λ2 are both positive regularization parameters.

• The regularization terms contain a new variable u and an
additional term ‖m− u‖22 compared to the conventional TV
regularization term.
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Total-Variation Regularization with Relaxed
Variable-Splitting

A New Misfit Function of Hydraulic Inverse Modeling

E(m,u) = min
u

{
min

m

{
‖d− f (m)‖22 + λ1 ‖m− u‖22

}
+ λ2 ‖u‖TV

}
,

where λ1 and λ2 are both positive regularization parameters.

• The regularization parameter λ1 controls the trade-off between the
data misfit term and the Tikhonov regularization term, and λ2
balances the amount of interface-preservation in inverse
modeling.
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A New Misfit Function of Hydraulic Inverse
Modeling (A Closer Look)

A New Misfit Function of Hydraulic Inverse Modeling:

E(m,u) = min
u

{
min

m

{
‖d− f (m)‖22 + λ1 ‖m− u‖22

}
+ λ2 ‖u‖TV

}
,

where λ1 and λ2 are both positive regularization parameters.

• The inner problem is to solve for m using a conventional inverse
modeling with the Tikhonov regularization and prior model u.

• The outer subproblem is to solve for u using a standard L2-TV
minimization method to preserve the sharpness of interfaces in
inversion result m.

• The interleaving of solving these two subproblems leads to an
inversion that not only improves the minimization of the data misfit,
but also enhances the sharpness of interfaces.
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Computation Methods

We employ the Alternating Direction Method of Multipliers (ADMM) to
solve our new hydraulic inverse modeling

Alternating Direction Method of Multipliers (ADMM)

m(k) = argmin
m

{E1(m)}

= argmin
m

{
‖d − f (m)‖22 + λ1

∥∥∥m− u(k−1)
∥∥∥2

2

}
u(k) = argmin

u
{E2(u)}

= argmin
u

{∥∥∥m(k) − u
∥∥∥2

2
+ λ2 ‖u‖TV

}
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Selection of the Regularization Parameter: λ1

• The subproblem of m(k) is a classical inverse modeling with
Tikhonov regularization.

• Various parameter estimation method has been developed:
L-Curve, GCV, etc.
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Selection of the Regularization Parameter: λ2

• The subproblem of u(k) is a classical L2-TV minimization.

• Surprisingly, not many effective methods in existing references.

• We employ the unbiased predictive risk estimator (UPRE):

Selection of λ2, (Lin et. al., SP (90) 2010):

λ2 = argmin
λ2

{1
n
‖rλ2‖

2
2 +

2σ2

n
trace(ATV,λ2)− σ

2}.
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Problem Setup and Model Discretization

• The reference problem is steady-state groundwater flow on the
square domain, [0,1]× [0,1], with fixed hydraulic head at y = 0
and y = 1, zero flux boundaries at x = 0 and x = 1, and zero
recharge.

• We run the tests on a Linux desktop with 32 cores of 2.0 GHz Intel
Xeon E5-2650 CPU, and 16.0 GB memory.

• The groundwater flow equation is solved using the finite difference
method on a uniform grid. The parameter grids are composed of
horizontal and vertical transmissivity nodes (as are illustrated in
figure below).
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Model Calibration in Hydrology - True Model
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True Model
• The plus (“+”) are the hydraulic-head observation points (wells).
• A horizontal profile indicated by the red dotted line will be used to

compare the results.
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Inverse Modeling Result - 2D Inversion
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2D Inversion
• Inversion result using inverse modeling with conventional TV

regularization
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Inverse Modeling Result - 2D Inversion
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Inverse Modeling Result - 1D Profile
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1D Horizontal Profile
• Profile of the inversion (red) v.s. the true value (blue)
• Inverse modeling with conventional TV method
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Inverse Modeling Result - 1D Profile
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1D Horizontal Profile
• Profile of the inversion (red) v.s. the true value (blue)
• Inverse modeling with our new TV method
• The interface is much better preserved
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Model Calibration in Hydrology - True Model
True Model
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True Model
• The dimension of the true model is 50× 50.
• Two low-permeable geologic facies are included in the true model

representing: sand (green) and clay (red). The background is
highly permeable (gravel; blue). The permeability within all the
three facies is assumed to be uniform.
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Inverse Modeling Result - 2D Inversion
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• Inversion result using inverse modeling with conventional TV

regularization
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Inverse Modeling Result - 1D Profile
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Location 2
• Profile of the inversion (red) v.s. the true value (blue)
• Inverse modeling with conventional TV method
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Inverse Modeling Result - 1D Profile
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• Profile of the inversion (red) v.s. the true value (blue)
• Inverse modeling with our new TV method
• The interface is much better preserved
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Conclusions

• We have developed a hydraulic inverse modeling using
total-variation regularization with relaxed variable-splitting.

• Our numerical examples using synthetic data show that our new
methods not only preserve sharp interfaces between facies with
contrasting permeabilities, but also significantly improve the
accuracy of the inversion. Therefore, our method has great
potential in characterizing the subsurface heterogeneity problems.

• We implement our new inverse modeling method using Julia in the
MADS computational framework (http://madsjulia.lanl.gov/), which
can be downloaded at https://github.com/madsjulia/Mads.jl.
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